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Starting Small

Theorem (Fermat’s Little Theorem)

Let a be an integer and n prime with n - a. Then

an−1 ≡ 1 (mod n).

Theorem (Miller-Rabin)

Write n − 1 = 2kq with q odd. One of the following is true:

aq ≡ 1 (mod n),

or for some m with 0 ≤ m < k ,

a2
mq ≡ −1 (mod n).
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Starting Small

Running a Test

Put 1517− 1 = 22 · 379. Try a = 2:

a2
0·379 ≡ 2379 ≡ 923 6≡ ±1 (mod 1517).

a2
1·379 ≡ 2758 ≡ 892 6≡ −1 (mod 1517).

Thus, 1517 is not prime (1517 = 37 · 41).
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Generalizing Integers

Definition

A quadratic integer is a solution to an equation of the form

x2 − Px + Q = 0

with P,Q integers.

Theorem

Let D = P2 − 4Q. The set of all quadratic integers in the field Q
[√

D
]

form a ring, denoted by OQ[
√
D].
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Generalizing Integers

Quadratic Integer Rings

D = −4. The ring of quadratic integers OQ[
√
−4] is the Gaussian

integers, Z
[√
−1
]
. Notice ±i satisfy x2 + 1 = 0, for which

P2 − 4Q = −4.

D = −5. Here, OQ[
√
−5]
∼= Z

[√
−5
]
.

D = 5. In this real case, OQ[
√
5]
∼= Z

[
1+
√
5

2

]
.
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Lucas Primality Test

Theorem

Let P,Q be integers such that D = P2 − 4Q 6= 0. Let τ be the quotient of
the two roots of x2 − Px + Q. For n an odd prime not dividing QD, put
n − (D/n) = 2kq with q odd. One of the following is true:

τq ≡ 1 (mod n),

or for some m with 0 ≤ m < k ,

τ2
mq ≡ −1 (mod n).
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Lucas Primality Test

Definition

If n is a composite integer for which τq ≡ 1 (mod n) or τ2
mq ≡ −1 (mod n)

with 0 ≤ m < k, then we call n a strong Lucas pseudoprime, or slpsp, with
respect to P and Q.

Theorem (Arnault)

Define

SL(D, n) = #

{
(P,Q)

∣∣∣∣ 0 ≤ P,Q < n, P2 − 4Q ≡ D (mod n),
gcd(QD, n) = 1, n is slpsp(P,Q)

}
SL(D, n) ≤ 4

15n unless n = 9 or n is of the form (2k1q1 − 1)(2k1q1 + 1), a
product of twin primes with q1 odd.
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Better Bounds

Theorem

SL(D, n) ≤ 1
6n unless one of the following is true:

n = 9 or n = 25,

n = (2k1q1 − 1)(2k1q1 + 1),

n = (2k1q1 + ε1)(2k1+1q1 + ε2),

n = (2k1q1 + ε1)(2k1q2 + ε2)(2k1q3 + ε3), q1, q2, q3|q,
where εi is determined by the Jacobi symbol (D/pi ) such that pi is a
prime factor of n.
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Better Bounds

Suppose we wish to determine that n is prime to a probability of
1− 2−128.

log4/15(2−128) ≈ 67.

log1/6(2−128) ≈ 50.

17 fewer trials are required using the improved bound.
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Solving Exceptions

Quiz!
√

961 =

31.

Let x0 be a guess of a root of the function f . A sequence of better
approximations xn is defined by

xn+1 = xn − f (xn)
f ′(xn)

.

Skip Example
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Solving Exceptions

Newton’s Method

Consider the case n = (2k1q1 − 1)(2k1q1 + 1). Does 2627 factor in this
form?

Write x = 2k1q1, so 2627 = (x − 1)(x + 1) = x2 − 1 and x2 − 2628 = 0.

x0 = 40.

x1 = 40− 402−2628
2·40 = 52.85.

x2 = x1 −
x21−2628

2x1
= 51.28782.

x3 = x2 −
x22−2628

2x2
= 51.26403.

√
2628 = 51.26402.

David Amirault Lucas pseudoprimes May 16, 2015 11 / 14



Solving Exceptions

Newton’s Method

Consider the case n = (2k1q1 − 1)(2k1q1 + 1). Does 2627 factor in this
form?
Write x = 2k1q1, so 2627 = (x − 1)(x + 1) = x2 − 1 and x2 − 2628 = 0.

x0 = 40.

x1 = 40− 402−2628
2·40 = 52.85.

x2 = x1 −
x21−2628

2x1
= 51.28782.

x3 = x2 −
x22−2628

2x2
= 51.26403.

√
2628 = 51.26402.

David Amirault Lucas pseudoprimes May 16, 2015 11 / 14



Solving Exceptions

Newton’s Method

Consider the case n = (2k1q1 − 1)(2k1q1 + 1). Does 2627 factor in this
form?
Write x = 2k1q1, so 2627 = (x − 1)(x + 1) = x2 − 1 and x2 − 2628 = 0.

x0 = 40.

x1 = 40− 402−2628
2·40 = 52.85.

x2 = x1 −
x21−2628

2x1
= 51.28782.

x3 = x2 −
x22−2628

2x2
= 51.26403.

√
2628 = 51.26402.

David Amirault Lucas pseudoprimes May 16, 2015 11 / 14



Solving Exceptions

Newton’s Method

Consider the case n = (2k1q1 − 1)(2k1q1 + 1). Does 2627 factor in this
form?
Write x = 2k1q1, so 2627 = (x − 1)(x + 1) = x2 − 1 and x2 − 2628 = 0.

x0 = 40.

x1 = 40− 402−2628
2·40 = 52.85.

x2 = x1 −
x21−2628

2x1
= 51.28782.

x3 = x2 −
x22−2628

2x2
= 51.26403.

√
2628 = 51.26402.

David Amirault Lucas pseudoprimes May 16, 2015 11 / 14



Importance

Primality testing is highly applicable to cryptography.

Many popular cryptosystems, including RSA, require numerous pairs
of large prime numbers for key generation.

Factoring a large semiprime takes more time than multiplying its two
prime factors.
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Future Research

The Baillie-PSW primality test combines a Miller-Rabin test using
a = 2 with a strong Lucas primality test.

No known composite passes this test.

What must be true of such n?
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